Regular Expressions and DFAs

See section 3.2 of the text

We have already seen the language of Regular Expressions.

1. The language represented by ε is $\{\varepsilon\}$; the language represented by ϕ is ϕ; any letter a in Σ represents the language \{a\}
2. If E is a regular expression then so is (E) and it represents the same language as E .
3. If expressions E and F represent languages \boldsymbol{L}_{1} and \mathfrak{L}_{2} then expression $\mathrm{E}+\mathrm{F}$ represents $\mathcal{L}_{1} \cup \mathcal{L}_{2}$.
4. If expressions E and F represent languages \mathfrak{L}_{1} and \mathfrak{L}_{2} then expression EF represents the language of strings formed by concatenating a string from \mathcal{L}_{2} onto the end of a string from \mathfrak{L}_{1}.
5. If expression E represents language \mathcal{L} then expression E^{*} represents the language of strings formed by concatenating 0 or more strings from \mathcal{L} together.
6. If expression E represents language \mathcal{L} then expression E^{+}represents the language of strings formed by concatenating 1 or more strings from \mathcal{L} together. $\mathrm{E}^{+}=\mathrm{EE}^{*}$

Note that our definition of the language represented by regular expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts the language represented by E .
Proof. Structural induction!!

Here are the base cases:

$$
\varepsilon:(S) \quad \phi: S
$$

For any a in $\Sigma: ~(\mathrm{~S} \xrightarrow{\mathrm{a}} \mathrm{T}$

For the inductive cases, suppose E and F are regular expressions whose languages are accepted by the ε-NFAs

Since these are ε-NFAs we can assume there is only one final state i each automaton and there are no transitions out of it. Here are automata for the expressions we can build from E and F:
(E):

EF:

E^{+}:

For the E^{*} automaton note that we need a new start state; it isn't enough to just make the start state final:

This accepts 000 and many other strings not in $\left(0^{*} 1\right)^{*}$

Example: Find a finite automaton that accepts the language represented by $(0+1)^{*} 01$

Example: Find a finite automaton that accepts the language represented by $(01+10)^{*}$

Theorem: Any language accepted by a DFA is also denoted by a regular expression.
Proof: This is more difficult because we don't have a recursive definition of a DFA for induction. We need to start with an arbitrary DFA and construct a regular expression for it.

Setup:

1. Number the states of the DFA $q_{1}, q_{2}, \ldots q_{n}$ where q_{1} is the start state. Note that we start indexing at 1 , not 0 .
2. Define $R_{i j}^{k}$ to be the set of all strings that take the automaton from state q_{i} to state q_{j} without passing through any states numbered higher than k (where "passing through" means first entering, then leaving).

For example, consider:

Here $R_{13}^{2}=\{00\}$
$R_{12}^{0}=\{0\}$
$R_{13}^{4}=\{00,010,0110, \ldots\}=01^{*} 0$

Note that if the automaton has n states then $\mathrm{U}_{q_{j \in F}} R_{1 j}^{n}$ is the set of strings accepted by the automaton. We will use recursion on k to show that each of the $R_{i j}^{k}$ sets is denoted by a regular expression.

For the base case, $\mathrm{k}=0$. If $\mathrm{i} \neq j$ then $R_{i j}^{0}$ is empty if there is no transition from q_{i} to q_{j} if there is such a transition then $R_{i j}^{0}=$ $\left\{a \mid \delta\left(q_{i}, a\right)=q_{i}\right\}$ If i and j are equal $R_{i i}^{0}=\left\{a \mid \delta\left(q_{i}, a\right)=q_{i}\right\} \cup\{\varepsilon\}$ In all cases $R_{i j}^{0}$ is finite and so is represented by a regular expression.

For the inductive case, note that for any $\mathrm{k}>0$

$$
R_{i j}^{k}=R_{i j}^{k-1} \cup R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1}
$$

This means we can represent $R_{i j}^{k}$ by the regular expression

$$
r_{i j}^{k}=r_{i j}^{k-1}+r_{i k}^{k-1}\left(r_{k k}^{k-1}\right)^{*} r_{k j}^{k-1}
$$

Finally, $r=\sum_{q_{j} \in F} r_{1 j}^{n}$ is a regular expression that denotes the language accepted by the automaton.

Example:

$$
\begin{aligned}
& \text { (q1 } \xrightarrow{1} \text { q. }_{\text {(q3) }}^{\stackrel{0}{1}} \\
& r_{i j}^{1}=r_{i j}^{0}+r_{i 1}^{0}\left(r_{11}^{0}\right)^{*} r_{1 j}^{0} \\
& r_{i j}^{2}=r_{i j}^{1}+r_{i 2}^{1}\left(r_{22}^{1}\right)^{*} r_{2 j}^{1}
\end{aligned}
$$

	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$
r_{11}^{k}	ε	ε	ε
r_{12}^{k}	1	1	$1+1(0+\varepsilon)^{*}(0+\varepsilon)=10^{*}$
r_{13}^{k}	ϕ	ϕ	$1(0+\varepsilon)^{*} 1=10^{*} 1$
r_{21}^{k}	ϕ	ϕ	ϕ
r_{22}^{k}	$0+\varepsilon$	$0+\varepsilon$	$(0+\varepsilon)+(0+\varepsilon)(0+\varepsilon)^{*}(0+\varepsilon)=0^{*}$
r_{23}^{k}	1	1	$1+(0+\varepsilon)(0+\varepsilon)^{*} 1=0^{*} 1$
r_{31}^{k}	ϕ	ϕ	ϕ
r_{32}^{k}	ϕ	ϕ	ϕ
r_{33}^{k}	ε	ε	ε

Finally, we are only interested in r_{13}^{3}.

$$
\begin{aligned}
r_{13}^{3} & =r_{13}^{2}+r_{13}^{2}\left(r_{33}^{2}\right)^{*} r_{33}^{2} \\
& =10^{*} 1+\left(10^{*} 1\right) \varepsilon^{*} \varepsilon \\
& =10^{*} 1
\end{aligned}
$$

